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RAGS: Real-analysis, ALAP Guided Synthesis

David L. Rhodes and Wayne Wolf

Abstract—A new technique for single-bus heterogeneous
system scheduling and hardware/software co-design is pre-
sented. This technique addresses challenging real-time prob-
lem domains (e.g. multi-rate periodic, dependent tasks)
for preemptive target systems including real-time operat-
ing system overheads and communication contention along
with proper protocol handling. Such realistic system at-
tributes are often times ignored in scheduling and co-
design efforts, but are addressed here using a novel ‘real-
analysis’ approach. This technique foregoes the usual list-
or cluster-oriented scheduling techniques for an as-late-as-
possible (ALAP) guided iterative improvement procedure.
A detailed system simulation is used at the scheduling level,
which in turn is used as the core of the overall co-synthesis.
Since an accurate simulation is the basis for the schedule
feasibility check, separate verification steps become unnec-
essary. In addition to using a real-analysis as part of the
scheduling, several other unique or unusual features are em-
ployed including the use of ALAP in heterogeneous schedul-
ing, recursive search level at a time, allowing backtracking
while maintaining polynomial execution time, as well as oth-
ers. This framework appears to be unique in its ability
to address the allocation/scheduling and co-design of het-
erogeneous systems which, in particular, employ arbitrated
busses for inter-task communication.

Keywords—heterogeneous processor allocation and schedul-
ing, communication scheduling, hardware/software co-
design, system modeling, busses, arbitration, optimization,
hill-climbing

I. INTRODUCTION

The design and scheduling of systems with real-time
constraints has certainly received a good deal of (war-
ranted) attention. Such systems may be employed in a
variety of application domains, including real-time control,
databases, transactional servers, streaming video/audio/-
telephonic applications, etc. Here, we are interested in
target systems that are composed as a communicating set
of processing elements (PEs) each running a real-time op-
erating system (RTOS). Such systems are somewhere in
the ‘middle-ground’ of parallel computing as scaled ac-
cording to the ratio of communication overhead to average
task computation time. For example, multi-core ASIC-
based target systems which utilize on-chip interconnects
provide very fast interconnects while loosely coupled, net-
work connected computers provide communication with
much greater delay. This ‘middle range’ is a very interest-
ing and challenging region for scheduling and co-synthesis
efforts. In contrast, as the average communication time to
computation time ratio decreases, the common assumption
of ideal (no overhead) communication becomes valid while
at the other extreme as the communication time to com-
putation time ratio increases a parallel approach becomes
detrimental (for an unbounded number of processors) [1],
[2].

In addition to addressing the scheduling and co-synthesis
of systems with significant communication utilization, we

simultaneously address many other realistic system char-
acteristics which are often times ignored. This is accom-
plished via careful construction of a system model which in-
cludes appropriate RTOS overheads, proper bus contention
and protocol handling, inter-PE and intra-PE data trans-
fer and its implementation in a contemporary RTOS, etc.
While such characteristics reside within the solution (i.e.
target system) domain, a different set of characteristics ap-
ply to the problem domain. These aspects include task
dependency, periodic or aperiodic execution, use of hard
or soft deadlines, etc. To illustrate these concepts, many
significant characterizations for both the target system and
input problem domain are captured in the taxonomy shown
in Figure 1. Characteristics listed along the top edge of
the figure represent those that are more general while the
structure shown below illustrates various specializations—
for example, homogeneous processors are a special case of
heterogeneous processors; a single processor case is a spe-
cial case of multiple processors. The figure divides char-
acteristics in terms of whether they are inherent to the
problem itself (‘Input Space’) or are properties of possible
solutions (‘Target System Space’).

The new scheduling and co-design system, called real-
analysis, ALAP guided synthesis (RAGS), developed here
permits the characteristics shown in the grey boxes of Fig-
ure 1. RAGS provides the designer a very general model for
behavior and performance. Although the RAGS co-design
framework should allow additional situations, an area of
particular interest is in communication busses which are
arbitrated. The arbitration protocol, along with other com-
munication resource protocols, fully dictate bus access yet
are rarely considered in embedded system scheduling or co-
design. Arbitrated busses, in particular, are used in PCI
[3] and Small-PCI/Compact-PCI [4] embedded systems.

Communication scheduling is sometimes considered as a
topic completely independent from other system considera-
tions (e.g. [5], [6], [7]). While it may make sense in some cir-
cumstances to treat communication separately (e.g. when
a good deal of control over communication scheduling is
possible or when communication time is insignificant when
compared to computation times), assuming that communi-
cation doesn’t affect the rest of the design is not generally
valid. Arbitrated bus based systems are particularly dif-
ficult to design because the scheduling of communication
tasks is a direct function of task allocation which, in turn,
must be decided by the scheduling algorithm. These dif-
ficulties are even further pronounced in the heterogeneous
processor case where task run-times are now processor de-
pendent as well. By tracking the desired versus actually
occurring communication task scheduling, it will be shown
that the samples used to demonstrate the new method ex-
hibit significant arbitration effects. Interestingly, the po-
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Fig. 1. A taxonomy of input and target system characteristics

tentially adverse impact of bus arbitration on scheduling
has been studied before, but only in a statistical sense as-
suming bus requests occur as Markovian arrival processes
[8].

Even without considering communication, heterogeneous
system scheduling of dependent tasks represents a signifi-
cant challenge (even the homogeneous form is a well known
NP-complete problem [9], [10]). Indeed, some prior efforts
deal with the heterogeneous allocation problem but ignore
communication [11], or treat communication in a simpli-
fied manner—e.g. without true resource contention [12],
[13]; consider only bus bandwidth effects and not true con-
tention [14]; are oriented to the non hard real-time arena
[15]; or include realistic communication models, but are not
fully automated [16], etc.

In addition to communication arbitration and hetero-
geneous processor scheduling, the final major target sys-
tem considerations are related to task initiation and con-
text switching, as well as preemption and interrupts, which
cause additional non-ideal behavior. Once again, such
characteristics are often idealized in scheduling or co-design
efforts where, for example, ideal preemption and context
switching is often assumed [17], [18], [19]. Thus, as readily
visible in Figure 1, the areas of proper RTOS overheads,
communication bus modeling and heterogeneous comput-
ing are key target system features to be addressed by the
scheduling and co-design tools presented here.

To our knowledge, no prior scheduling or co-synthesis ef-
fort has dealt with this set of characteristics; but related
efforts will be discussed in the ensuing sections. The need
to address this range of non-ideal effects has resulted in a
new ‘real-analysis’ approach which takes advantage of the
fact that realistic system effects such as RTOS task man-
agement overheads and communication protocols can be
readily modeled and simulated. The underpinnings of this
system model, presented in the next section (Section II), is
derived from execution traces from a modern RTOS. The

co-design approach, described and illustrated in Section V,
divides the overall problem into one of generating possi-
ble hardware configurations each of which is checked for
feasibility. This feasibility check is actually a complete al-
location and scheduling attempt of the proposed system
configuration and is a useful tool in its own right. This ‘in-
ner’ scheduling routine is described in Section I'V. It makes
use of the as-late-as-possible (ALAP) schedule as com-
pared to the actual schedule analysis (hence the monikers
‘ALAP-guided’ and ‘real-analysis’) to perform the schedul-
ing. Note that another distinct advantage of this approach
is that subsequent verification steps are not needed, all tar-
get system effects are accounted for in the check for sched-
ule feasibility.

II. AN ACCURATE SYSTEM MODEL

Several aspects of the target system must be examined
in order to develop a complete, and valid, system model.
Our categorization classifies effects as belonging to one of
the following topics: RTOS task execution and preemption;
bus protocols; and intra- and inter-processor data transfer.
However, these aspects are interacting in that each cannot
be considered entirely independently (e.g. inter-processor
data transfer relies on transport over the bus and the as-
sociated RTOS actions taken by the sending and receiving
processor). RTOS topics are discussed first, followed by
communication and bus issues. The section concludes with
a summary of the findings.

Since the PEs are each executing a RTOS, we need to (i)
select the appropriate OS mechanisms for use in the sys-
tem; and (ii) model these mechanisms to a level of accuracy
reasonable for the given problem. By examining execu-
tion traces (e.g. Figure 2) from a representative RTOS sys-
tems, namely VxWorks(@© RTOS from WindRiver Systems,
Inc. [20] the best selections for task management and inter-
task communication were made. Complete details can be
found elsewhere [21], but the experiments reveal that the
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Fig. 2. VxWorks scheduling trace for three user tasks, taskHighPri, taskLow1Pri and taskLow2Pri, using an 90 MHz Intel Pentium(c) processor
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Fig. 3. Target system model

most important preemptive task-scheduling overheads can
be captured using two parameters: interrupt service time
(1sT) and context-switching time (CST).

Moving on to consider communication effects, even
among those embedded system design efforts which include
communication contention, rarely are bus protocols prop-
erly considered. A particular focus here is on single-bus sys-
tems, as depicted in Figure 3, which employ an arbitrated
communication protocol. Note that in the heterogeneous
case, each processing element (PE) may be of a different
type and relative speed. As is apparent, communication is
controlled via the process of arbitration.

Multi-processor PCI-based embedded systems (e.g.
Small-PCI/Compact-PCI [4]), which use an arbitrated bus
protocol, are the primary target architecture for the RAGS
scheduling and co-design effort. Interestingly, the PCI
standard [3] does not specify a particular arbitration pol-
icy but only says that it should be ‘fair.” Typical im-
plementations use a round-robin protocol, where the bus
grant is given to the requester with the device index follow-
ing the current user (modulo the number of bus devices).
The model developed here follows a round-robin arbitration
protocol for which results are presented. A fized arbitra-
tion protocol model, where preference is given to the bus
device with the lowest index, and a fully schedulable bus
model which is unrealistic but useful for comparison pur-
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Fig. 4. A task graph (A) and possible no-overhead schedule (B)

poses, have also been developed. Each PE is able to act as
a PCI bus master, and note that PCI’s ‘hidden arbitration’
feature implies that almost no overhead (other than several
bus clock cycles) is required between bus master switching.

To illustrate arbitration, consider the task graph (dag)
depicted in Figure 4.(A) where all task run-times are 1 on
any PE, that communication time is also 1 unit, and that
the deadline for task T3 is 4. Figure 4.(B) depicts the situa-
tion where Ty, Ts, Ts +— pey and T4, Ts, Ty + pes (— is the
symbol used to represent allocation). At time = 2, both
T45 and Ty 3 are ready for communication over the COM
resource (the bus). In a system (or design tool) which al-
lowed arbitrary communication bus scheduling, one would
be free to select the ordering of these to meet goals. How-
ever, this is not the case for bus systems which dictate
protocol, in particular for this case, round-robin arbitra-
tion goes to pes for communication task Ty 5 (representing
as5) before Th 3 since pe; was the last to use the bus. In
this situation, the deadline is missed. Alternatively, if fixed
arbitration were used, or if Tp + pes then T 3 would be
selected over T} 5 and the deadline would be met.

The system model is summarized below:
e Communication can overlap computation, this

implies that a reasonably capable communica-
tion controller is employed by each PE.
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e Communication tasks are scheduled in accor-
dance with the bus protocol, which is nominally
round-robin arbitrated. Local ordering of com-
munication tasks (those stemming from a par-
ticular PE) is possible.

e Communication tasks, once begun, are not pre-
empted. This implies that the various PCI la-
tency timers are set to sufficiently large values to
accommodate data transfers. Note that the size
of every data transmittal is known in advance.

e A context switch time (CST) is incurred prior to
every task initiation or preemption.

e An interrupt service time (IST) is incurred on
receiving PEs when data is to be transferred.

e As was verified experimentally, no additional
overhead is incurred for inter-task data trans-
fer for co-allocated (same PE) tasks. Once tasks
are allocated, shared memory mechanisms can
be used with fast local semaphores to manage
this data [21].

The major extension of this model over that more typ-
ically used in real-time scheduling or co-design [12], [13],
[15] is the inclusion of communication protocol and RTOS
task scheduling and preemption overheads.

III. PROBLEM DEFINITION

Using the “.name” syntax to represent object attributes,
the input, I, consists of: (i) a task graph set, G = (T, a),
where each task, T; € T, has a run-time as a function of the
PE type to which it is allocated (T;.RUNTIME(PE;)) and
optionally a deadline, 7T;.DEADLINE and each arc a; € a
(labeled for convenience using the task from/to index), con-
veys an amount of data aj,.DATASIZE; (ii) a set of PE
types, PE = {PE,, PE,, ...}, each member of which has a
COST attribute and an execution time for each of the tasks
in G; and (iii) a communication resource, com, which has
a COST and DATARATE attribute. A hardware configura-
tion, config = {pe,com}, composed as a set PE instances
pe = {pe1,pea, ...} where each pe; is an instance of a PE
type from PE and one instance of com (unless a single
PE solution exists). Allocation of a task, T;, to a proces-
sor, pe;, is denoted T; — pe; for an individual task and
T = config for a total mapping; in general, this notation
is meant to include both the static assignment of the task
to a PE and its priority setting (local scheduling).

From G an augmented task graph, G', is derived which
includes tasks representing bus transfers which take place
on behalf of inter-PE communication. =~ Whenever the
sender and receiver are allocated to the same PE (e.g.
T; — pey and T; — pey) then T; ;. RUNTIME = 0, other-
wise T} j.RUNTIME = @; j.DATASIZE/com.DATARATE, where
com.DATARATE is the data-rate for the COM resource. An
example of this augmentation is shown in Figure 5; Figure 4
also labels communication tasks in this way.

With this input specification, the co-design problem is
to find a feasible configuration, config,, such that the
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Fig. 5. (A) A task graph; (B) augmented with communication tasks

sum of the constituent costs is minimized. This single-
goal co-design optimization problem is readily recognized
as being NP-hard, since the underlying inner-level allo-
cation/scheduling problem is NP-complete [22], [12], and
hence heuristic approaches are expected. RAGS and its
inner scheduler make use of least common multiple (LCM)
expansion for treating multiple input task graph sets, where
each has its own period. After the input task graphs have
been expanded in accordance with their LCM, both the
inner-level scheduler and overall co-design method main-
tain a low-order polynomial complexity as long as their
respective loop iteration counts are polynomial. LCM
expansion—included in the construction of G’ from G—
is not polynomially bounded in the worst case, however in
practice may not be too problemmatic as task graphs with
highly co-prime periods may not be encountered. Nonethe-
less, once this LCM expansion has occured, it has been
shown [21] that the complexity of the overall co-design
method RAGS is:

O (IPE|+ V[ + E[) (1)

where |PE| is the number of PE types available for selec-
tion, |V] is the sum of the number of tasks in the (LCM
expanded) task graphs and, |E| is sum of the number of arcs
(inter task communication) in the expanded graph. Since
the co-design technique makes direct use of a scheduler,
this topic will be presented in the next section, including
heterogeneous ALAP computation and use.

IV. SCHEDULING

This section presents the details of the allocation and
scheduling routine used in RAGS. Like many NP-complete
or NP-hard solvers, the scheduler’s feasibility check entails
finding a solution for the target system. That is, the result
is not only ‘pass’ or ‘fail’ but, in the case of success, a com-
plete system task allocation and schedule including proto-
col consistent inter-PE communication and OS overheads.
While the next section will show the complete co-design
algorithm, it is essentially an optimization technique that
makes direct use of this scheduler.
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InnerLoop(G’, config, LoopCount)
//
// note that config = (pe,com)
//
Randomly initialize G’ = config
Compute ALAP for all tasks, T € G’
foreach T; € G’ // simple feasibility check
if (T;.ALAPEND — T;.BEST-RUNTIME) < 0 then
return false

dowhile LoopCount not exceeded
if UtilizationFailure(G’, config) and Uallowed
then // Utilization Update
r < most overutil. resource (pe or com)
if UpdateUtil(r, config) = OK
then make random re-allocation
else // Speed Update
Analyze schedule for the current config.,
finding start/end-times VT € G’
if all deadlines met then return true
[ + {Ts} where T} first ALAP violation
if Speed(l, G', config) // is successful
then make random re-allocation

return false

Fig. 6. InnerLoop of RAGS

While analyzing a schedule (for a given allocation and
priority setting) on a target system which includes var-
ious detailed RTOS and communication effects is rather
straightforward, deciding upon a feasible schedule or co-
designing both hardware and software (the scheduling) is
very challenging. Arbitrated communication, in particu-
lar, greatly complicates the problem since communication
task ordering is a function of computational task allocation.
This issue is further exacerbated in the heterogeneous case
where task run-times are also dependent on allocation. As
can be seen, arbitration (as well as some other communica-
tion protocols) couples the separately hard problems of pro-
cessor allocation/scheduling and communication schedul-
ing.

The classic approaches of list-based or cluster-based
scheduling, a summary of which can be found in [23], will
not fare well in this arena. For example, in list-based
scheduling a priority-list is maintained where each task at
the head of the list is next selected for scheduling until all
tasks are scheduled. The variants of list scheduling dif-
fer in the formation of the priority list (its ordering) and
PE allocation for the selected task [23]. Even if the com-
munication bus were included as a resource to schedule,
the technique essentially assumes that each resource can
be freely scheduled—but this is not at all the case in arbi-
trated bus systems. A similar argument can be made for
cluster-based approaches. A further limitation in sched-
ulers derived from these classes is that, for the most part,
they are aimed at non-preemptive systems.

A new approach, shown as InnerLoop in Figure 6 at-
tempts to make incremental improvement to the actual

schedule analysis using the ALAP schedule as a guide. A
task’s ALAP end-time is [24]:

T;.DEADLINE,
T; ALAPEND = min

T (T ALAPEND — T};.RUNTIME)

T]

(2)
where T are successor tasks to T;. However, since the
problem is heterogeneous the question of which run-time
to use for ALAP computation arises. By using the smallest
possible run-time for each task in G’, including T} ;, = 0 for
communication tasks, ALAP end-times become true ALAP
times which must be met, fully independent of allocation.

Following the computation of the ALAP schedule, the
allocation (and associated local scheduling, determined by
relative priority settings) is first randomly initialized. A
simple check, pertinent to heterogeneous systems, is next
made to quickly assess feasibility; since the ALAP end-time
is set in such a way that meeting it becomes a necessary
condition, if any task’s ALAP end-time less its best pos-
sible (heterogeneous) run-time is negative, then this hard-
ware configuration can be quickly dismissed as infeasible.
Following these initialization steps, the iterative improve-
ment steps occur.

A maximum of LoopCount iterative improvement steps
are then allowed, where each step falls into one of two types
(as expressed in the then and else clauses): a ‘utilization’
update mostly performed by UpdateULtil, or a Speed update.
Each of these steps are discussed in detail in the following
subsections, but a quick, basic overview of the iterations
is presented here. Since the ‘real schedule analysis’ is a
computationally expensive operation, a simple utilization
check, along with simple remedies, is made when the sys-
tem is over-utilized. The value of these ‘utilization steps’
is limited however by the inherently NP-hard nature of
even just allocating (without local scheduling nor commu-
nication effect and overhead considerations) tasks onto the
heterogeneous processors. Hence the method limits their
use appropriately. The alternative action in the iteration,
which is the heart of the scheduler, is a complete sched-
ule analysis followed by a check for schedule feasibility, in
turn followed by corrective actions (a Speed update) should
deadlines fail to be met.

A. Utilization-based Updates

A utilization failure occurs whenever the current alloca-
tion causes over-utilization of any resource, either a pe or
com. This situation is easily detected (in the Utilization-
Failure function here) by summing the run-time to period
ratio for each PE and com for the given allocation—it is a
necessary condition that utilization be less than or equal to
1. Since the schedule analysis is a rather ‘expensive’ oper-
ation, the utilization failure check and subsequent ‘utiliza-
tion update’ are used as a quickly executing alternative.
When the most over-utilized resource, r in algorithm, is
a PE, say pey, the UpdateUtil routine tries to re-allocate
the task with the largest run-time allocated to per to an-
other PE—these ‘other PEs’ are selected in order of least
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to most utilized. Note that throughout the method, care is
used to avoid repeated configurations, here at the schedul-
ing and allocation level and later in RAGS at the hardware
configuration level. Thus UpdateUtil may fail, and a ran-
dom re-allocation performed, whenever the technique fails
to produce an allocation which is distinct from those tried
earlier (a list of prior allocations in canonical form is kept
but not depicted in the algorithm for simplicity).

The other situation handled by UpdateUtil is when the
com resource is the most over-utilized. Obviously, re-
allocation of communication tasks is not an alternative in
single-bus target systems. So here, the method performs
a clustering operation. The communication task with the
longest run-time is identified, T}, along with its associated
sending and receiving tasks (which are designated T; and
Ty, respectively, in accordance with the nomenclature de-
fined earlier). Based on which will provide the lower total
system utilization, which is the weighted sum of the utiliza-
tions of each resource, either T; or T} is allocated to the
other’s PE (thereby eliminating the communication task).
Again this is done only if a repeated configuration will not
result.

A final consideration within the regime of utilization up-
dates is the term Uallowed appearing in InnerLoop, Figure 6.
Achieving a utilization which is not over-utilized can be
seen to be a difficult problem in itself [21] by showing equiv-
alence with the NP-complete bin-packing problem [10]. We
would not necessarily expect the rather simplistic possibil-
ities for utilization updates, e.g. single task re-allocation or
clustering, to be very effective for this problem. Hence the
method provides a mechanism for limiting the utilization
update steps via the Uallowed condition—which is true if
the number of utilization updates performed is below the
limit. Additional discussion concerning the setting of this
parameter appears during the presentation of results.

B. Speed-based Updates

If the system is not over-utilized nor prevented from us-
ing utilization updates (via Uallowed), then a Speed-based
update is performed. A complete schedule analysis,
based on the model developed earlier including for exam-
ple arbitrated communication, is performed. If all dead-
lines are met, then the scheduler (InnerLoop) is successful
and a return value of true indicates this. If one or more
deadlines have not been met then, following the schedule
analysis, the earliest starting task which misses its dead-
line, T in InnerLoop, is identified and passed on a list, [,
as an argument to Speed. The recursive routine Speed is,
in general, trying to identify a useful allocation and local
scheduling change to improve the schedule. This is done
with respect to T, to begin with, using the current sched-
ule analysis and the ALAP schedule as a source of valuable
guidance.

The reason for selecting the earliest starting task which
misses its ALAP schedule is twofold: first, since the ALAP
end-times were set using the best possible run-times for all
tasks, it is a necessary condition that this task be sped up,
and secondly, Ty may be the cause of subsequent ALAP

Speed(l, G', config)
T, < task on list [ with latest end-time
if SpeedTask(T),, config)

then return true

else
m < unique predecessors of each task € [
ifm=20

then return false  // nothing left
else return Speed(m, G, config)

Fig. 7. Speed routine is the recursive entry point for the scheduling
algorithm.

misses. In the case where an (potential) improvement can-
not be identified, a random change is made to continue the
iterations. In our experience with the method, this random
step is typically used for about 1% of the iterations.

Figure 7 provides the algorithm for the Speed routine.
It operates by first selecting the task on list [, T, which
has the latest end-time (in the actual schedule analysis).
T}, along with [, becomes an argument to SpeedTask which
assesses the possibility of improving the ending time of T),
without worsening the end-time of the entire list /. If such
a (possible) improvement is found, the change is made and
a positive return value is given to InnerLoop (indicating a
viable change was made). Otherwise, Speed recurses to the
predecessor tasks of the tasks on [, if there are any, and
recursively applies itself to this predecessor list.

This recursive action can be viewed in the context of
Figure 5. If T was the first task to miss its deadline, then,
barring a successful intervening SpeedTask call, the recur-
sion would be to the list {T5 4,754} and then to the list
{T>, T3} and so forth. As can be seen, due to the construc-
tion of G’ from G, alternating task lists of PE-allocated
and communication tasks are examined. The net result is
that Speed is providing lists of tasks, including communi-
cation tasks, for examination by SpeedTask in the recursive
fan-in of T. Since it is a necessary condition that T be
sped up, this recursion is appropriate in that it aims to im-
prove the maximum of the task end-times for each recursive
level leading up to 1.

Continuing in the top-down description of the routines
comprising the overall method, SpeedTask is given in Fig-
ure 8. This routine is trying to identify possible scheduling
changes which will improve the end-time of the list [ given
T, (which is particularly important in that it is the task on
list [ with the latest current end-time). It is important to
consider the end-time for the list [ since, by construction
via Speed, these are siblings in the task graph—improving
the end-time of one at the equivalent expense of delaying
another is not a fruitful improvement.

The detailed action of SpeedTask proceeds in accordance
with a ‘principle of least disturbance,’ reserving more dras-
tic changes for last. Algorithmic definitions for the rou-
tines used in SpeedTask are given in [21], while a descrip-
tion is given here. The first change considered is merely
one of altering the priority of T, while keeping all allo-
cations the same. This is done in the RePrior routine—
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SpeedTask(T, I, config)
if RePrior(T},1, config) then return true
if T, is communication task then return false
if MoveBlocking(T}, config) then return true
else
endtime < 1), . ENDTIME
foreach pe; € R such that 7T}, runs on pe;
pe;.EST_END_TIME <
EstEndTime(l, Allocate(T}, pe;), config)
Sort PEs according to EST_END_TIME
foreach pe; (such that T}, runs on pe;)
if pe; EST_END_TIME < endtime
AND MoveOK(T), — pe;)
then
T, — pe;
return true

// re-allocate

return false

Fig. 8. SpeedTask accesses the possibility of improving the maxi-
mum end-time of all tasks on the list, I, with respect to changes
in relation to T,. When a new mapping is found (third to
last line), T}.PRIORITY is set such that it will be the highest
among all co-allocated tasks which execute within the time range
[Tp-.READY, T}, .START).

note that if I (and therefore T},) is composed of commu-
nication tasks, then re-priorization: (i) affects only local
outgoing communication scheduling and is subject to bus
arbitration (see Section II); (ii) is the only possibility since
single-bus systems are considered. Thus only RePrior ap-
plies for communication tasks, while the remaining steps
apply to PE-allocated tasks. The next consideration is
via the MoveBlocking routine. Here, consideration is given
to re-allocating tasks which may be blocking T),. The fi-
nal consideration is a re-allocation and re-prioritization of
Tp. An examination of the algorithm will reveal that a re-
allocation to each PE that supports T}, in order of best to
worst end-time (estimated with EstEndTime) for the list [
is done. If the end-time improves, and a duplicate configu-
ration is not presented (checked with MoveOK), then it is
accepted.

While the InnerLoop and Speed framework provides the
general search strategy in the quest for schedule improve-
ment, the low-level routines in SpeedTask, namely RePrior,
MoveBlocking and EstEndTime, provide the ‘knowledge’ of
the system model. These routines perform their respective
functions in the context of the current system model, for
example, when assessing a task re-allocation, EstEndTime
incorporates factors concerning the impact arbitration will
have. An actual (accurate) schedule analysis occurs after
each change at the InnerLoop level and is always the sole
basis for feasibility checking, but these low-level routines
provide quickly evaluated schedule estimates for the pur-
poses of design space exploration. Even so, the estimates
may be quite accurate in that they are done in the context
of the current schedule analysis.

[\ Greedy DSC
ETF/TS
Il RAGS

97%

89%

78%

56%

30%

19%
12%

1%

Tight 10% slack  20% slack  40% slack

Fig. 9. Scheduling success rate (%) comparison of non-preemptive,
no overhead scheduling of different methods. CPU times are:
53.3, 6.1 and 7450.0 seconds for all 100 cases for Greedy DSC,
ETF/TS and RAGS, respectively.

C. Comparison with List- and Cluster-based Schedulers

Even though the scheduler in RAGS is aimed at systems
which exhibit non-ideal effects, a comparison to traditional
list- and cluster-based approaches can be made by applying
RAGS to an idealized situation. This is done by removing
all communication overhead/contention, RTOS effects and
using a non-preemptive schedule for 100 single-rate sam-
ples on homogeneous PEs. In accordance with this sim-
plified problem form, several modifications to the RAGS
method were made. Note that only changes to the sched-
ule analyzer itself, as well as the routines aimed at esti-
mating end times (EstEndTime), re-prioritization analysis
(RePrior), are necessary.

The particular list-based method used for comparison
is the Farliest Task First (ETF) with topological sort
(ETF/TS) [23], [25] while DSC [2], coupled with the al-
location and scheduling method in [26] modified using the
longest sequence (a critical path) clustering [12] technique,
is used as the representative clustering method. Figure 9
shows the success rates (ratio of the number of cases meet-
ing deadlines to total number of cases) for each of these
methods as the deadline slack is adjusted (see [21] for ad-
ditional details). The superiority of the RAGS scheduler
is clear in this figure. Although we might expect vari-
ous improvements and special modifications to list- and
cluster-based scheduling to provide somewhat better re-
sults, it is not clear that such an approach will reach the
results obtainable by RAGS. Of course, the adaptability
of such methods to the real-life situations capable of being
addressed by RAGS is also unclear.
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RAGS(I, DesignSteps)
// Note that: I =(G,PE,COM)
// COM 1is not a set but a single bus type
C+{} // C is the list of prior configs.
config, < 0
create G' from G
dowhile DesignSteps not exceeded
config, = copy of last config. on C
if config, # () then
if single-PE elimination on config. then
goto TRY-CONFIG
if single-PE substitution on config, then
goto TRY-CONFIG

// no reduced cost config.--hill climb
dowhile config, not duplicated on C
Add a PE instance to config,
// may add randomly or balanced

TRY-CONFIG: // Got a config to try

Append config. to C

if InnerLoop(G’, config., LoopCount) successful then
if config..COST < config,.COST then

config, < config,

report config,

Fig. 10. The RAGS routine. In the ‘Add PE’ step two distinct
possibilities where examined: either adding completely randomly
or in a ‘balanced’ manner (see text).

V. Co-DESIGN

The full co-design method can now be described in detail.
While the ‘inner loop’ level (the heterogeneous scheduler
just described) is much different than schedulers derived
from list- or cluster-oriented approaches, the ‘outer loop’ is
based on a hill-climbing approach (the bimodal technique
reported in [21] does not have hill-climbing). The possibil-
ity of changing prior decisions during a search or optimiza-
tion is called backtracking. Since the allocation/priority of
any task may change many times during the iterations in In-
nerLoop the scheduler is backtracking—this is quite unlike
traditional list- or cluster-based scheduling which typically
make one-time fixed decisions in the scheduling process. At
the outer-level, backtracking is common in co-design efforts
[27], [28], [29], [30], [31], although hill-climbing techniques
to be described here are tailored to the problem at hand.

The complete co-synthesis method, RAGS, is listed in
Figure 10. The initial steps are as follows: set C, the list
of previously explored configurations, to the empty list; set
config, , the best solution found, to nil; create the commu-
nication task augmented graph, G’, from G. The iterative
method then loops for a count of DesignSteps, a user pro-
vided constant, followed by reporting of the best solution.

The steps within the loop provide the tailored hill-
climbing operations. A new configuration, config,, is ini-
tialized as a copy of the last configuration on the list C'. If a

solution has never been found, the possible PE elimination
or substitutions steps are skipped and only a PE addition
step(s) is performed. In relation to hill-climbing the PE
elimination step is a descending cost search while the PE
addition step is ascending cost search (the PE substitution
step may be either). Skipping the descending steps prior
to finding the first solution aids in avoiding the initial con-
figurations which do not have sufficient system processing
capabilities. However, once a solution has been found the
technique favors looking at reduced cost configurations in
preference to increased cost solutions. Using the last config-
uration as a starting point, the method first tries PE elim-
ination which alters the configuration by eliminating each
PE instance in turn. If none of these alterations result in a
non-repeated configuration (using list C'), PE substitution,
where an instance of each PE type is substituted for each
existing PE instance, is tried. If all of these possibilities
also result in duplicated configurations then a hill-climbing
step is used. Here, PE instances are added to the configu-
ration, config., until a unique, unrepeated configuration is
found.

Once a new configuration, config., is found to try, it is
added to C' and then checked for feasibility using the sched-
uler (InnerLoop). In addition to avoiding resource config-
urations that are easily decided to be insufficient during
the initial search, another unique feature is the method
for adding PEs during the hill-climbing. Rather than add
them randomly, they are added in such a way to maintain
balance among PE types. For example, if there are 4 PE
types (|[PE| = 4) and the current configuration has 2 PE
instances say one of type PFE; and one of PFEy, then the
next one to be added will be of type either PE> or PEj3
(with equal probability). There may be some concern that
this unwisely biases the general hill-climbing approach, but
subsequent comparisons show improved performance. The
avoidance of recently repeated configurations and careful
selection of a new design point following local exploration
are the hallmarks of the Tabu Search method [32], [33].
RAGS implements these principles by fully avoiding re-
peated configurations (these checks do not alter the com-
putational complexity of the method as their contribution
is dominated by the other functions) and exploring the de-
sign space in a balanced way looking at possible solutions
from lower to higher cost.

VI. EXAMPLES AND RESULTS

As a first example, a comparison against two other co-
design tools is presented. As was the case at the scheduling
level, due to the uniqueness of the target system, which
includes RTOS effects and communication protocols, we
must simplify (idealize) the model to enable the compar-
ison. Table I compares SOS [22], MOGAC [27], [28] and
RAGS using the single-bus examples of SOS. Note that
MOGAC finds the same solutions as SOS and hence only
it’s CPU time is shown in the Table. Although these exam-
ples are small, none having more than 9 tasks, the MILP
solutions given by SOS are known to be optimal. As can
be seen, RAGS compares favorably with MOGAC, even
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TABLE I
SINGLE-BUS EXAMPLE COMPARISON WITH SOS AND MOGAC. CPU TIMES PRESENTED ARE not ON THE SAME COMPUTER TYPES (SEE TEXT).

SOS

MOGAC RAGS

Example || COST | Sol'n | CPU time

CPU time [| cosT | Sol'n | CPU time

SOS 11-4 7 pe1, pes 28s

3.3s 7 same <ls

SOS 1.7 5 pes 375

2.1s 6 | pe1, pes <ls

SOS V-6 10 | 2xpey, pes 107.3m

n/a 10 same 682s

SOS V-7 6 pe1, pes 89.5m

n/a 6 same <ls

SOS V-15 5 pes 61.5m

n/a 6 | pe1, pes <1s

100

80 1

60 [ b

40 | i

Sample Count

0 f—
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(a)

100

60 - 1

40 t 1

Sample Count

S — 1 1 1 1 1

0
-100 O 100 200 300 400 500 600 700 800 900
Added Cost for Known versus Found Solution

(b)

11. Comparison of results obtained by varying DesignSteps, (a)
20 and (b) 100. Bar height is the number of samples within
the x-axis range and 0 on the x-axis is the cost for the known
solution.

Fig.

though RAGS is using the real-analysis technique aimed
at target systems with non-ideal behavior.

For the next experiment, a set of 100 random input sam-
ples sets were generated such that: there are 32 tasks total
organized into 2 task-graphs; 3 PE types are available; csT
and 1ST average 2% and 1.5% of average task runtimes; a
heterogeneous solution for 4 PE instances is known such
that PE utilization is over 83% and bus utilization is over
31% in the known solution. The solution is only known
to exist when communication can be scheduled arbitrarily,
however the target system is defined to use round-robin

arbitration (see [34], [21] for details concerning case gen-
eration). Table II summarizes the results as parameter-
ized by the user provided constants DesignSteps and Loop-
Count. As can be seen, increasing values for the iteration
counts provides improvement in the co-design goal, cost,
while of course requiring additional CPU time. The CPU
times given are the average per case seconds for a (mod-
est) Sun SparcStation-20 system. The average cost for the
known solution is 493.6 (with 4 PEs). As another point of
consideration, the final column in Table II shows the re-
sults when DesignSteps and LoopCount are set to 50 and
10,000, respectively. While this improves the results over
the 50/5,000 settings, it is inferior to the 100/5,000 setting
in both system cost/number of PE metrics and in CPU
time.

The improvement garnered by increasing DesignSteps
can also be visualized. For example, Figure 11 shows sam-
ple density (count) for the per-case difference of found solu-
tion cost versus that of the known solution. In both cases,
LoopCount is fixed at 5,000—these graphs correspond to
columns 2 and 4 of Table II. Figure 11.(a), depicts the
situation when DesignSteps is set to 20 while Figure 11.(b)
shows the situation for a setting of 100 DesignSteps. As
is expected, increasing DesignSteps results in finding lower
cost solutions, in one case better than the known solution
(which was previously described as not necessarily being
the optimal solution).

As a point of further comparison, two examples from
Li and Wolf [7] were used. The first is a real-world de-
rived MPEG-1 example requiring two data-dependent task
graphs; this example contains a video processing task graph
comprised of 11 tasks and an audio processing task graph
composed of 5 tasks. Each of these runs at different peri-
odic rates and the problem is presented as a four PE homo-
geneous scheduling problem including bus contention. Task
execution and communication is non-preemptive. Since the
periods of the two task graphs are rather co-prime, RAGS
addresses this by slightly lowering the period of the au-
dio task-graph to lessen the LCM effects. RAGS success-
fully schedules this on four PEs as well, finding a solution
that requires approximately 26.5% communication bus uti-
lization and PE utilizations ranging from 74.3% to 93.7%.
MPEG-1’s moderately high communication utilization il-
lustrates the importance of accurately including communi-
cation effects during synthesis.
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TABLE II
RESULTS FROM 100 CASE STUDY. UTILIZATION STEPS LIMITED TO ONE-HALF LoopCount.

DesignSteps/LoopCount
10/5000 | 20/5000 | 50/5000 | 100/5000 || 50/10000
No. Sol’'n Found 95 98 98 98 98
Avg. Cost 606 597 523 506 520
Avg. Number PEs 5.11 5.07 441 4.23 4.32
CPU time (s) 897.3 1389.1 3216.7 6526.2 7659.2

The other example presented in this reference ([7] as
Fig. 9) is a co-design problem. This example uses non-
preemptive, homogeneous processors communicating over
a single bus. As before, the bus includes contention and is
non-preemptive. RAGS finds the same two PE solution as
Li and Wolf did (note that the original source of the ex-
ample only found a three PE solution). Although each of
these examples do not include the realistic effects of over-
head nor bus arbitration both of which are a particular
focus of the method, these serve to further validate the
RAGS approach.

Experiments were also carried out to assess the potential
bias introduced by adding PEs in a balanced way, rather
than totally randomly (as would be more typical in hill-
climbing approaches). These experiments revealed, for the
settings of DesignSteps and LoopCount in Table II, slightly
inferior results (as judged by average cost and number of
PEs) as compared to the balanced PE addition technique
presently used—e.g. for the 20/5000 DesignSteps / Loop-
Count setting a cost of 605 is obtained (rather than 597).
Thus, the balanced add-in method was selected.

VII. CONCLUDING REMARKS

A new scheduling and co-design technique, RAGS, which
exploits an actual schedule analysis has been described.
Use of an actual schedule analyzer was motivated by
the need to include significant non-ideal behaviors stem-
ming from both RTOS managed task execution as well as
protocol-based communication, specifically arbitrated com-
munication. In addition to the incorporation of an accurate
schedule analyzer, several other unique concepts have been
developed and demonstrated. These primarily include the
use of ALAP as a guide in heterogeneous system alloca-
tion and scheduling and the employment of iterative im-
provement methods that include backtracking at both the
scheduling and co-design levels.

This technique was used for preemptively scheduled
heterogeneous multiprocessor systems with RTOS-derived
overheads using an arbitrated bus for communication, as
well as compared with scheduling and co-design tools aimed
at more idyllic circumstances. Generally, the current ap-
proaches of list- and cluster-based scheduling are ill-suited
to this domain which exhibits tight coupling of the difficult
problems of task allocation and communication scheduling.
RAGS was also shown to provide superior results against
these methods in the idealized system regime, although the
improvement comes along with an increase in run-time.

This is to be somewhat expected as RAGS is not at all
targeted to idealized systems. With the attendant modifi-
cations to the scheduler and the RePrior and EstEndTime
routines, the approach should be well-suited to addressing
other non-idealized domains.
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