
“TaskWare” – A New Tool for Task Scheduling for Distributed System Design

Dr. David Rhodes, Dr. Benjamin Epstein

OpCoast LLC, 2530 Hooper Ave., Brick, NJ, 08723

Keywords: Task scheduling, co-design, allocation,
resource contention, object-oriented design, CASE,
analysis of alternatives, task graph, task modeling, UML

ABSTRACT
We describe herein TaskWare®, a novel tool for the
object-oriented design and simulation of large-scale
software systems. The tool takes a high-level view of
systems through the application of task modeling,
enabling a performance assessment of software-based
systems containing thousands of software elements
distributed across hundreds of hardware platforms, the
latter of which intercommunicate via generalized
internetworking. Realistic effects of process activation,
communication overhead, resource contention, resource
failure, and other effects found in large-scale systems can
be analyzed with our approach. In addition, we include
the analysis of alternatives, as expressed through
deployment studies (i.e., assignment of software
processes to specific processor hardware) and software
system design studies (e.g., use of different software
design approaches for implementing the same
functionality). Although TaskWare remains work in
progress, we describe the tool’s current status and
capabilities.

1. OVERVIEW OF TASKWARE
TaskWare is a Web-based tool that applies task modeling
to facilitate the quantitative analysis, design and
optimization of distributed software systems prior to full-
scale development. Much of our effort towards its
development has leveraged our previous work in the task
modeling area (see [1] through [5]) as well as by utilizing
other published techniques. While task-scheduling and
allocation have been the subject of many research projects
(for an overall summary of the field, see ref. [6]), little of
this technology has transitioned to commercial, easy-to-
use tools.

Figure 1 describes the overall multi-tiered
architecture of TaskWare. The Web-based orientation of
the tool enables users to access it from anywhere to
facilitate multi-member teams in design sharing and
concurrent system development. The tiered architecture
allows for separate development of TaskWare’s elements,
extensions to the system, interfaces to off-the-shelf design
tools, and porting of the toolset to different computing
platforms.

Where CASE-based and other existing tools operate
well at later stages in the computing system development
cycle (such as at the target-system code generation
phase), TaskWare is aimed at the early-stages of the
development process. By providing analytical assessment
of various design implementation choices prior to any
code implementation, TaskWare provides the feedback
necessary to make and guide critical, high-cost impact,
early-stage implementation choices. Likewise, TaskWare
addresses the problem of later-stage system deployment
by optimally allocating processing tasks to processing
elements. This can be useful when legacy code must be
optimally integrated into a newly designed distributed
system environment.

Figure 1. TaskWare implementation overview.

The current implementation of TaskWare uses

MySQL [7] as the database for storing elements of the
design in consideration, PHP [8] for server-side scripting
with the GD [10] module for dynamic graphics creation
(operating on an Apache Web server [9]). These
components, along with a C++ task scheduling tool
derived from earlier work [1] and [11], form the
TaskWare prototype. TaskWare’s present Web
implementation includes database and PHP scripts that
provide viewing and smart edit capabilities. The database
currently uses 28 tables, although nine of them are

considered the ‘primary’ information tables covering the
parameters of: Processor Type, Interface Type (IFace),
Media, Task , Message (exchanged between tasks),
TaskGraph (a high level design of Tasks and Messages),
Object (a container or grouping of Tasks corresponding to
an object in object oriented programming languages or a
component in UML), RunTimeTable, and Study (an
instance of an interconnection of Processors and their
IFaces, Media, and TaskGraphs).

Entries in the nine major tables—each representing a
significant hardware, software or system definitional
element—can have arbitrary attributes attached to them.
An attribute is a name/value pair where values can be
defined to be of type number or string. TaskWare
supports a single inheritance system that can be used to
form a class hierarchy among elements. For example, the
definition of the ‘Pentium 4 PC’ and ‘Super PC’
Processors can derive definitions from ‘An old Pentium
PC.’

A basic task scheduler analysis module has been
interfaced with the TaskWare database described above.
Its code is written in C++ and derives from our prior task
scheduling and co-design work [1]. The scheduler uses
the MySQL API to interface with the database and begins
running and extracting information from Studies based on
user commands provided via a Web interface. For a given
Study, the scheduler extracts the processor/interfaces,
media, task graphs, run time table and configuration
(mapping of objects to processors) data. Note that the task
graph portion of the data includes tasks and their inter-
messaging as well as the overall task graph execution
requirement (e.g. one-time or periodic). To support
object-oriented software systems, we allocate objects to
processors and not individual tasks. Allocation of an
object implies that all of its tasks are similarly allocated of
course.

Based on the task allocation, inter-task messaging
routing is determined. At the present time, this is very
simple and can only handle a ‘single hop’ but multiple
hops will be addressed in future versions. In this single-
hop form, a single ‘communication task’ is used to model
the effect of communication. The duration of the task is
the message size (set with the messageSize attribute on
the Message) divided by the Media bandwidth (set with
the bandwidth attribute on the Media).

Given the above input information, the task
scheduler executes and determines the start and end times
for each task instance (including communication tasks).
This is the act of determining the task schedule and is the
prime function of a task scheduler. Currently, we have
provisions in the database for defining deadlines on tasks,
which can be soft or hard. A hard deadline is one that
must be met while a soft deadline is one which uses an
expression evaluation to contribute to a penalty function.
The combination of penalty contributions and meeting of
hard deadlines form a metric that can then be used in

system optimization. At present, deadlines are not
evaluated.

2. EXAMPLE
Figure 2 depicts a simple task graph entitled ‘WebUse.’
This graph illustrates a single HTTP request and response
between a Web client (e.g., browser) and Web server. It is
composed of two objects, called ‘ClientWare’ and
‘ServerWare’ that intercommunicate via messages ‘wm1’
and ‘wm2’ of types ‘HTTPreq’ and ‘HTTPresponse’
requiring 72 and 4900 bytes respectively. The ClientWare
object uses two tasks, called ‘C1’ and ‘C2’, which are of
task types HTTPreq and HTTPrecv respectively. Note C1
and C2 can be viewed as representing object “operations”
in UML parlance, or “methods” in object-oriented
programming convention—here the task ‘C2’ is an
instance (use) of the method HTTPrecv in the object
ClientWare. The server object ‘ServerWare’ utilizes a
single task called ‘S1’ of type ‘HTTPresp’. The overall
task graph is meant to represent a single Web page client
request (from C1), server response (by S1) and client
receipt (by C2).

Figure 2. The ‘WebUse’ task graph.

3. DEPLOYMENT ALTERNATIVES

When alternative systems are studied wherein each
alternative utilizes the same software tasks and structure,
but where tasks (and their object containers) are allocated
to processors differently, the resulting alternatives are
called deployment alternatives. That is, the software
structure and associated tasks have not changed, but the
processors that tasks are executing on have changed. By
re-allocating processors, changes to the message routing
in the system also occur.

Figure 3 shows ‘Study4’ which uses two task
graphs: a Web1 task graph (as an instance of the WebUse
task graph given above) which executes every 50 seconds,
and the second task graph SSL1 (instance of SSLauth)

which executes every 200 seconds. As can be seen, the
deployment is such that the client object of Web1 is
allocated to PC Station 1 (which is an instance of the
Pentium 4 processor) and the Web1 server object likewise
is allocated to Server 1 (an instance of a Sun Server). As
for the SSL1 task graph, the client object is allocated to
PC Station 2 (also a Pentium 4 processor) and both the
SessionMgr and SSLauthorizer objects are deployed to
Server 1. The interface called ‘eth0’ for each of the
processors is connected to the LAN 105 media, of type
Ethernet. Names such as ‘LAN 105’, ‘Pentium 4 PC’, etc.
are of course free choices made by the user as they define
the system. Alternative deployment configurations to
Study4 may also be tried, such as by allocating the
SessionMgr and SSLauthorizer objects to Server 2 (not
shown).

Unlike deployment alternatives, software-system
alternatives utilize different tasks, task graphs, media,
etc., where each alternative software system design
presumably attempts to accomplish the same job or
function. These alternatives must be captured as separate
studies in TaskWare.

4. ANALYSIS RESULTS
Our prototype task scheduling application has been

developed to interact directly with the system definition
database and return results to it. All user interaction is via
a Web interface (see Figure 4). The ‘Run Task
Schedule(…)’ button triggers the scheduler, while passing
parameters regarding which analysis is to be performed.
After successful completion, the tool writes the status
along with detailed schedule information back to the
database and some other results. Shown is the ‘demand
rate’, which is the number of tasks launched per unit time.
Note that ‘Server 2’ is not used in configuration 1 of
Study4 so its demand rate is 0. The ‘Graph Task
Schedule(…)’ button can then create a graphic of the
schedule.

An example of TaskWare’s Web-based graphics
output is shown in Figure 5. Time increases in the
negative y-axis and the x-axis depicts each resource
(processors or media) in the study. TaskWare colorizes
(not visible here) the tasks based on which task graph they
are contained in. Recall that each of these task graphs is
set to periodically repeat, in this case at intervals of 50
and 200 seconds respectively. Note that use of the LAN
105 media resource is also part of the schedule, although
the short messages in this study result in only short bursts
of use.

Since the tasks of SSLauth are essentially serial
there isn’t much advantage to using the second server as
is demonstrated here. The present TaskWare prototype
supports non-preemptive scheduling, but if the processor
where defined to use preemptive scheduling (and the tool
updated to support it), then one task could interrupt
another task if it had higher priority. Our co-design work

([1] – [5]) has developed preemptive schedule analysis
and a data arrival model for process activation overheads
and message processing; however, a simpler scheduler
was adapted for demonstration purposes. Of course, the
example presented herein is very simple.

More advanced metrics remain to be implemented in
TaskWare. These might include: average and worst case
processor demand rates, resource contention metrics,
interface queue depths, critical path assessment, etc.
Moreover, hard and soft deadline evaluations remain to be
implemented as well.

ACKNOWLEDGEMENT
This work was supported by the US Navy SPAWAR,
SBIR Phase I contract N65538-04-M-0102, Task
Scheduling for Distributed System Design, (Topic N04-
069), 4 Nov. 2004.

REFERENCES

[1] David L. Rhodes, Wayne Wolf, “RAGS: Real-
Analysis, ALAP Guided Synthesis,” IEEE
Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 20, No. 8,
August 2001, pp. 931-41.

[2] David L. Rhodes, Wayne Wolf, “Co-Synthesis of
Heterogeneous Multiprocessor Systems Using
Arbitrated Communication,” IEEE Int. Conf.
Computer-Aided Design (ICCAD’99), Nov. 1999,
pp. 339-42, San Jose, CA.

[3] David L. Rhodes and Wayne Wolf, “Overhead
Effects in Real-time Preemptive Schedules,”
IEEE/ACM 7th Int. Workshop on Hardware /
Software Co-Design (CODES’99), 3-5 May 1999,
Rome, Italy, pp. 193-7.

[4] Robert P. Dick, David L. Rhodes and Wayne Wolf,
“TGFF: Task Graphs For Free,” IEEE Int.
Workshop on Hardware/Software Co-Design
(CODES/CASHE’98), 15-18 March 1998, Seattle,
WA, pp. 97-101.

[5] David L. Rhodes, Wayne Wolf, “Allocation and
Data Arrival Design of Hard Real-time Systems,”
IEEE Int. Conf. on Computer Design (ICCD ’97),
12-15 Oct. 1997, Austin, TX, pp. 393-9.

[6] H. El-Rewini, T. G. Lewis, H. H. Ali, “Task
Scheduling in Parallel and Distributed Systems,”
Prentice Hall, 1994.

[7] http://www.mysql.com/
[8] http://www.php.net/
[9] http://www.apache.org/
[10] http://www.boutell.com/gd/
[11] Objective Force Warrior: C4ISR Architecture

Study, October 2003.

BIOGRAPHIES

David Rhodes is the founder of OpCoast LLC, a small
business dedicated to R&D in advanced network design.
Dr. Rhodes specialties include large scale design and
simulation of distributed systems, network protocol
designs, and task modeling. He received the PhD and MS
degrees in Electrical Engineering from Princeton
University, and the BS in EE from Rutgers University.

Benjamin Epstein handles Special Projects at OpCoast.
His specialties include wireless simulation and design,
multi-level security for tactical systems, and electronic
surveillance for law enforcement and intelligence
agencies. He holds a PhD in Bioengineering from the
Univ. of Pennsylvania, MBA from NY University, and a
BS in EE from the University of Rochester.

Figure 3. Study4 in Configuration 1.

Figure 4. Snapshot of the Web page for triggering the schedule analyzer. Note the configuration table of Config#2
is not shown in the figure.

Figure 5. Part of the Study4 Configuration 1 task schedule generated by TaskWare.

