
SCALABLE URBAN NETWORK SIMULATION (SUNS)

 David Rhodes, Benjamin Epstein Barry Perlman

 OpCoast and US Army CERDEC
 Brick, NJ Fort Monmouth, NJ
 { dave, ben }@opcoast.com Barry.Perlman@us.army.mil

ABSTRACT

A clear and accurate understanding of communication
network performance is essential, especially where all lay-
ers of the protocol stack – from physical propagation to
application transport protocols – must be accounted for.
While some solutions exist for RF communications over
‘open-terrain’ areas, the urban environment is particu-
larly challenging. To meet this challenge, a server-based,
real-time solution for assessing complex communication
and network effects in urban environments has been devel-
oped. By combining advanced RF ray-tracing propagation
modeling and a full network simulator, the Scalable Urban
Network Simulation (SUNS) software is able to provide
accurate communications effects services. SUNS supports
tactical modeling and simulation by predicting electro-
magnetic signal coverage and path loss through applica-
tion of a full 3D physical knowledge of the urban environ-
ment and terrain features. The commercial OPNET
network simulator is used as the core of the system, with
SUNS operations supported through a custom OPNET
model that functions as a modeling and simulation server.
The server, in turn, communicates with other node models
within the OPNET simulation. In the approach, urban
propagation data are pre-computed using high-
performance computing (HPC) resources utilizing ray
traced models of the urban scene.

INTRODUCTION AND BACKGROUND

Assessing the performance of wireless communication
networks, including impact at higher tactical levels (e.g.,
military / force level), represents an ongoing challenge in
communications systems modeling. We can view the
communication system in accordance with the protocol
layers inherent in layered protocol design. At the lower
layers, physical effects such as antenna performance and
RF propagation are of paramount importance along with
media access control (MAC). Internet protocol (IP) and
routing generally form the next layers, while transport pro-
tocols such as UDP and TCP occupy the next. Above these
layers reside applications which can operate autonomously
or act as directed by users. In tactical environments, these
applications operate as driven by the demands of users or
of tactical applications.

We can see that the multilayer communications stack
forms an environment wherein each ‘layer’ not only util-
izes the layers above and below, but also wherein each
layer must dynamically react to those around it. For exam-
ple, if a communication fails at the transport or tactical
operational level, it might be retried; packet errors or drops
may cause other layers such as routing or transport to react
in various ways. While ‘cross-layer’ design [1,2] attempts
to optimize performance by easing the strict separation of
protocol layers, networked communications, and its simu-
lation, still primarily operate as a discretely layered envi-
ronment. Unlike prior communication effects server efforts
[3-5], the SUNS system is focused on the urban environ-
ment. This provides a particularly challenging problem.

A comprehensive approach to military operational assess-
ments therefore requires communications modeling that
takes on a holistic approach to account for the full interac-
tion of all communications layers – including high level
tactical layers as well. However, the computational as-
pects of these layers are much different. Antenna modeling
and propagation rely on lengthy physical domain electro-
magnetic (EM) calculations; the network and other layers
generally make use of discrete event simulation. Yet while
both the network and upper layers make use of discrete
event simulation, they are each large independent pro-
grams. In our case, the primary client that operates at the
upper layer is the OneSAF system [6]. This mix of model-
ing environments naturally leads to use of a client/server
software architecture as attempting to combine these tools
into a single executable process would be difficult and the
result unmanageable.

ARCHITECTURE

The basic architecture of the SUNS server solution is
shown in Figure 1. A custom model is built into the net-
work simulator to provide the server interface. This model-
ing component communicates with each node within the
network simulation to enable/disable, relocate and initiate
simulated communications as directed by the client. As
communications occurs, either as explicitly requested by
the client or as the result of routing or media access layer
operations, propagation data requests take place to deter-
mine point to point losses. These loss requests are handled

1 of 6

2 of 6

by a modification of the simulator code that enables access
to a database containing pre-computed propagation data
for the urban scene under study.

The details of the OPNET [7] models and the propagation
database and its computation are presented in later sec-
tions. SUNS and the clients communicate via TCP or
UDP. Client/server message formats follow that as speci-
fied in the Communications Effects Server (CES) [8], with
a few extensions. The messages of primary importance
allow: creation and deletion of a radio node, status and
location updates to a node, communication effects requests
and responses.

OPNET MODELS

The primary models developed for SUNS in the OPNET
framework include the SUNS server, which only exists as
an interface and not as a communication node within the
simulation itself, and the wireless radio node models that
interact with the server and the general simulation frame-
work. Figure 2 shows some of the node and process mod-
els used in SUNS. Finite-state based process models form
the core of the modeling basis. For the states that are
shown in red, the simulation stops within the state execut-

ing model C++ code before the stop and the simulation
continues whenever an ‘interrupt’ is received wherein ad-
ditional code is executed within the state. Code is executed
within states shown in green as well, but the simulation
does not stop within the state. In the server process, only
‘self-interrupts’ and ‘remote-interrupts’ are used in our
modeling approach as will be explained later.

Fig. 1. SUNS Architecture.

The server process is composed of an initialization state,
followed by an idle state. In the initialization state, the
server initializes an external socket for client communica-
tions and discovers and disables all mobile nodes within
the scenario. The server then sends a self interrupt which
will later trigger moving to the idle state. Prior to reaching
the simulation stop point in the idle state, a check is made
for any incoming messages from SUNS clients. If no in-
coming messages are received, a self interrupt is sent after
0.1 second. This will cause the simulation to follow the
‘ALL_OTHER’ transition back to the idle state after 0.1
second which then rechecks for incoming client messages.
In this way, incoming client requests are checked ten times
per second (the simulation runs in real time with clients,
not at maximum simulation speed). The server also checks
for previously sent messages that were never received (ex-

Fig. 2. OPNET models.

plained later). During this loop period, however, a remote-
interrupt might be received which can only indicate that
one of the mobile nodes in the simulation has completed a
message reception. This causes a transition to the RECV
state, which returns a communication-effects-response
message to the SUNS client.

Among others, messages that the server may receive from
a client include those to ‘create’ a platform, up-
date/relocate a platform, and to initiate a communication-
effects-request between two nodes. Upon receipt of a cre-
ate platform type message, the SUNS server activates a
mobile node in the simulation while keeping track of the
mapping between the client and the simulator’s internal
nodal identification. During the message processing, nodes
are positioned according to the location specified by the
client using GCC coordinates. A communication effects
request message from a client will cause the SUNS server
to send a remote interrupt to the simulated node that is de-
fined as the sender of the message.

3 of 6

Figure 2 also shows the disposition of the mobile nodes
within a simple scenario and expansions of their internal
processes. The mobile node model is an extension of the
OPNET built-in mobile node model that adds the
FMS_interactor process which, in turn, interfaces to other

node modules at the UDP or TCP level. The
FMS_interactor process is shown in the upper left hand
corner of the figure. During initialization, the
FMS_interactor process issues ‘UDP listen to port 5000’
(arbitrary number) commands to the UDP layer1 so that
the model will send incoming packets on port 5000 up to
the FMS_interactor process via a ‘stream interrupt’. Fol-
lowing initialization in the init state, the model enters an
idle state which just awaits simulation interrupts. If a re-
mote interrupt is received, the model transitions to the
FMS_send state. By design, the only remote interrupt that
this model will receive is from the SUNS server model for
initiation of a communication effects request. The model
uses the mapping of client naming for the receiver to de-
termine the model name and IP number for the receiver
and sends a simulated UDP message of the size requested
by the client to the model’s UDP layer.

This simulated message may or may not eventually arrive
at the receiver, but if it does it is sent to the
FMS_interactor process as a stream interrupt. The
FMS_interactor process, upon receipt of this stream inter-
rupt, transitions to its UDPrecv state, which then sends the

1 Only simulated UDP is used at present. TCP operation, which requires

additional setup and teardown, is not explained here.

remote interrupt to the SUNS server for processing and
eventual return of a successful communications effects
response. However, what if the message transmission be-
tween communications nodes fails? In the idle state of the
SUNS server, a check is made for previously sent mes-
sages that never where received; if such a message exists
for over 2 seconds the server concludes that this message
will never arrive and returns a failed communication ef-
fects response message to the client. Note that this ‘time-
out’ period would have to be adjusted upward for very
long messages. Also note that during the simulated mes-
sage sending that all routing protocol actions, IP level op-
erations (such as packet fragmentation), and media access
layer actions are all occurring simultaneously. All RF
propagation loss requests from OPNET utilize the pre-
computed propagation values (described next).

URBAN PROPAGATION DATABASE

The primary scenario of interest includes a very dense ur-
ban area approximately 6 x 3 km. At the radio communica-
tion frequency of interest, ray-tracing [9] is warranted as
the proper EM approach. Although any tool can be used to
provide data for the propagation database, EMAG Tech-
nology’s EMLounge [10] is the tool applied in urban ray
tracing. This tool provides several features conducive to
achieving necessary results such as the separation of user
interface and solver and the solver’s ability to use high
performance parallel computers. To help understand the
data, Figure 3 shows a graphical result of a propagation
computation (various buildings are shown blue in color). A
transmitter is located near the center of this small scene
and propagation losses to receivers over the area are
shown.

Fig. 3. Ray traced Results

As propagation computations in even subsets of this com-
plex environment require hours of compute time, propaga-
tion losses must be pre-computed. The physical complex-
ity of the area does not permit analysis of the entire scene.

These facts give rise to resolving several interrelated issues
which will now be described.

The most straightforward pre-computation would place
potential transmitter (Tx) and receiver (Rx) sites in a
closely spaced grid over the entire space and store the re-
sults in a database for later access. However, the scale of
the scenario does not allow this approach. Our solution is
to use potentially overlapping, variable-sized ‘zones’
within the scenario. The data for each zone is stored in a
‘result table’ while a single ‘directory table’ provides or-
ganization of multiple result tables. The results tables
would provide propagation data, as computed by ray trac-
ing, over short distances. Longer distance data relies on
propagation loss computations through simple empirical
models [11-13]. Use of empirical models for long urban
distances is due to limitations in being able to analyze the
very large numbers of buildings in the intervening and sur-
rounding area Moreover, as the zones do not have to be
regularly spaced nor are confined to a grid and are in sepa-
rate tables, updating the data with more refined results
over time is simpler. For example as computational power
and memory capacity increases, analysis over larger zonal
sizes will be possible; we can then remove the smaller
zone tables and insert zones of larger size. No changes in
the network level model are required to provide this en-
hancement.

Fig. 4. Zone Example

Figure 4 illustrates the zone concept. The set of larger or-
ange points that span the overall area is a zone, two other
zones at closer spatial resolution are also shown. In this
example, the directory table would have two entries refer-
encing two result tables for each of these zones. In general,
the zone is a set of Tx/Rx locations within a rectangular
area (its actually a 3D box since elevation is also in-
cluded). In the application of the RF analysis tool, the

4 of 6

5 of 6

Tx/Rx sites are regularly spaced, but there is no such re-
quirement in the database design. A ‘level of accuracy’
(LOA) is also associated with each result table, and in this
case the course zone would have a lower proclaimed LOA.

The directory table, called prop_directory in the data-
base, has the following fields (ignoring elevation for the
moment):

id tool version model loa resolution
freq polarization table_name
lat1 lat2 lon1 lon2

which provides the database id key, the tool used to create
the data, the version of the tool, the model used within the
tool, the LOA, the basic spatial resolution of the data, the
frequency in MHz, the antenna polarization, the name of
the table (this is the ‘pointer’ to the result table), the range
of the zone in GCC lat/long units, respectively. Each result
table, again ignoring elevation, has the following fields:

id rlat rlon tlat tlon loss

which gives the primary id key, the receiver location
(lat/long), the transmitter location, and the propagation
loss value, respectively.

During simulation, the propagation request attempts to
retrieve the ‘closest’ match from the database. This match,
however, is a function of the following parameters: fre-
quency, Rx and Tx location, table resolution, and the level
of accuracy. Our current search approach is to locate the
propagation data table that: (i) includes the Rx and Tx lo-
cation in the zone (this is basically not negotiable), (ii) that
has a frequency match within 1 KHz, and (iii) among the
possible tables, use level of accuracy as a primary sorting
value and resolution as a second. The steps needed to ex-
tract the best propagation loss value now follow.

The first step is to consult the directory table
(prop_directory) to find which tables include the zone
of interest covering the Rx/Tx points. Both of these must
be within the bounds indicated. This step may return more
than one table as zones can overlap or be subsets of each
other. Furthermore, each potential table cold reflect dif-
ferent levels of accuracy and resolutions. For Rx and Tx
points of 22.1/33.2 and 22.0/33.1 (lat/long) at a frequency
of 2.4 GHz, the following SQL statement works to select
the result table with the best LOA and secondarily resolu-
tion for a zone within a frequency match of 1 KHz (0.001
MHz):
SELECT id,table_name FROM prop_directory
 WHERE (22.1 BETWEEN lat1 AND lat2)
 AND (33.2 BETWEEN lon1 AND lon2)
 AND (22.0 BETWEEN lat1 AND lat2)

 AND (33.1 BETWEEN lon1 AND lon2)
 AND (ABS(2400-freq) < 0.001)
 ORDER BY loa DESC, resolution LIMIT 1

This will choose the table that covers the Rx/Tx points
with the highest LOA (from the ORDER BY loa
DESC,resolution LIMIT 1 phrase) with a secon-
dary search criteria of lowest resolution; note reversing
these clauses would result in finding the table with the
highest resolution first and then secondarily using LOA. If
there are applicable tables with equal LOA and resolution
then an arbitrary one is chosen by this statement.

After this statement is used to select a propagation data
table, say called prop_v_900_2, it is then queried to get
the loss for the closest match to the Rx/Tx points as the
sum of the squares of differences (metricvalue in the
SQL statement):
SELECT id,loss,
 (ABS((rlon-33.2)*(rlon-33.2) +
 (rlat-22.1)*(rlat-22.1)) +
 ABS((tlon-33.1)*(tlon-33.1) +
 (tlat-22.0)*(tlat-22.0))) AS metricvalue
 FROM prop_v_900_2 ORDER BY metricvalue LIMIT 1

Note that this approach doesn’t allow for finding an alter-
nate table which might have better point matches (resolu-
tion) but not as good LOA. Other search tradeoffs such as
softening the frequency match to find better resolution or
LOA matches can be performed with alternate queries
One way to try these tradeoffs is to eliminate the ‘LIMIT
1’ phrase in the initial search, or change the 1 to a higher
value, and then search each of the propagation data tables
returned. Also, right now we are only putting data with
vertical polarization into the database, so this is not a
search criteria; but of course the database design properly
supports polarization parameters.

CONCLUDING REMARKS

The primary models developed for SUNS in the OPNET
framework include the SUNS server and the wireless radio
node models that interact with the server and the general
simulation framework. These models, combined with our
urban propagation database and propagation lookup ap-
proach, create a server-based resource for accurate com-
munication effects in complex urban environments. A par-
ticular client for the SUNS system is the One Semi-
Automated Forces (OneSAF) system. The interaction of
OneSAF and the SUNS Server account for real-time com-
munication effects that include all protocol, routing, IP,
MAC and propagation effects. This enhanced functionality
will provide for more advanced network centric training,
analysis and experimentation for urban environments as

6 of 6

well as provide pertinent feedback to communication net-
work developers.

The work is sponsored by the DoD High Performance
Computing Modernization Office (HPCMO) under the
Office of the Secretary of Defense.

REFERENCES
[1] V. Kawadia, P.R.Kumar, “A cautionary perspective on

cross-layer design,” IEEE Wireless Communications, Feb.
2005, Vol. 12, Issue 1, pp. 3-11

[2] S. Shakkottai, T.S. Rappaport, P.C. Karlsson, “Cross-layer
design for wireless networks,” IEEE Communications
Magazine, Oct. 2003, Vol. 41, Issue 10, pp. 74-80

[3] J. Dulmage, H. Tuan, J. McConnell, M. Riehl, J. Wessel,
J. Peace, “Communications effects server-realistic com-
munications effects for distributed simulations,” MILCOM
2000, Los Angeles, CA, pp 335-339

[4] Rajive Bagrodia, “Communication Effects Server for Mo-
bile Ad Hoc Networks,” MILCOM 2004, Monterey, CA.

[5] Rajive Bagrodia, Ken Tang, Steve Goldman, Dilip Kumar,
“An accurate, scalable communication effects server for
the FCS system of systems simulation environment,”
 37th Winter Simulation Conference, 2006, Monterey, CA,
pp 1226-1233

[6] http://www.onesaf.net/community/
[7] www.opnet.com
[8] Communication Effects Server (CES) 2.0 User’s Guide,

Version 1, September 2005, by Scalable Network Techno-
logies, Inc.

[9] F. Aryanfar, K. Sarabandi, M.D. Casciato, K. Sabet,
“Wave propagation characterization in complex urban ar-
eas using EMTerrano,” IEEE Antennas and Propagation
Society International Symposium, Monterey, CA, 20-25
June 2004, Vol. 2, pp. 1631-1634

[10] http://www.emagware.com/emterrano.html
[11] Y. Okumura, E. Ohmori, T. Kawano, and K. Fukuda,

“Field strength and its variability in VHF and UHF land-
mobile radio service,” Review of the Electrical Communi-
cation Laboratory, vol. 16, no. 9-10, pp. 825-873, 1968.

[12] M. Hata, “Empirical formula for propagation loss in land
mobile radio services,” IEEE Transactions on Vehicular
Technology, vol. 29, no. 3, pp. 317-325, 1980.

[13] J Walfisch, HL Bertoni, “A theoretical model of UHF
propagation in urban environments,” IEEE Trans on An-
tennas and Propagation, 1988

http://www.onesaf.net/community/
http://www.opnet.com/
http://www.emagware.com/emterrano.html

