
Unbalanced Cache Systems

David L. Rhodes�

US Army CECOM
Research, Development and Engineering Center

Fort Monmouth, NJ 07703
d.l.rhodes@ieee.org

Wayne Wolf
Department of Electrical Engineering

Princeton University
Princeton, NJ 08544

wolf@ee.princeton.edu

Abstract

The new concept of an unbalanced, hierarchically-
divided cache memory system is introduced and analyzed.
This approach generalizes existing cache structures by al-
lowing different memory references (e.g. as possibly un-
evenly divided within an address-space) to be subject to var-
ious levels of caching as well as varied amounts of cache at
each level. Under the assumption that the total cache size at
a particular level is fixed, it is easily shown that at least one
divided cache structure exists for which the miss-rate is the
same as a single unified cache. By using alternate imple-
mentations, however, the method may provide a significant
decrease in miss-rates as is shown via simulations. Specifi-
cally, SPEC95 benchmarks are used to demonstrate that the
technique is effective for general usage but it may be even
more useful for embedded systems where memory access
patterns can be more fully controlled (i.e.via the compiler).
In addition to improved miss-rates, another advantage is
that the hit-time for multiple smaller caches may be smaller
than for a single larger cache. Disadvantageous, but read-
ily surmountable, electrical aspects are also discussed.

1. Introduction

As implemented with VLSI technology as it has existed
over the last few decades, the gap between processor speed
and main memory latency has been ever widening [4]. One
of the primary techniques used to address memory’s inabil-
ity to respond in a timely manner to ever speedier processors
has been the addition of one or more levels ofcache (the
distance of the cache from the processor is called itslevel).
A cache is an intermediate memory with interfaces to each
of lower level caches or the processor on one side and to the
next higher level cache or main memory on the other. The

�Mr. Rhodes is also with the Department of Electrical Engineering,
Princeton University.

term processor here represents any type of computational
element—for example a microprocessor, digital signal pro-
cessor (DSP), a very-long instruction word (VLIW) special-
purpose processor—which reads or writes to some form of
memory.

Most processors are synchronous designs which perform
(or execute) particular ‘sub-components’ of each instruc-
tion on different (CPU) cycles. Furthermore, many proces-
sors are pipelined or super-scalar, which means that sub-
components of multiple instructions are executing simulta-
neously. Such designs place even further demands on the
memory system, usually requiring multiple data read/writes
and instruction fetches within the same cycle. With respect
to a particular processor, the latency (delay) of a memory
operation is effectively measured in terms of cycles, rather
than time. So the effectiveness of a particular memory sys-
tem may be evaluated or estimated in terms of latency mea-
sured in cycles of reads/writes/fetches for a particular ex-
ecutiontrace (a sequence of references) or for some ex-
pected average reference mix.

As will be elaborated, the proposed hierarchically-
divided cache structure generalizes existing cache structures
by allowing uneven memory space and cache sizedivision
at each cache level. With respect to a particular memory
reference, two forms of imbalance arise: in the amount of
cache experienced at each cache level; and in the number
of cache levels (before reaching main memory). Although
some background is presented, in general it is assumed that
the reader is well aquainted with memory system design for
example as contained in [4].

2. New Structure

From the perspective of the processor, the basic memory
operations are the reading/writing of data from/to a memory
reference. A slightly finer distinction of memory operation
types is usually used, including:read implying a data read;
write implying a data write; instructionfetch implying the
read of a instruction (self-modifying code, which would re-

1



quire the ability to write instructions, is not common and re-
quires special handling in many current processors). There
is sometimes a further distinction regarding whether or not
memory operations occur on behalf of the operating system
or for a particular application, but this level of detail will
not be necessary here.

For completeness of discussion, the operation of a typi-
cal two-level cache design as shown in Figure 1 is briefly
described. A memory reference (read/write/fetch) is is-
sued from the processor (P) to the first level cache (L1).
If the reference is present in the L1 cache, then the response
(read/write) takes place after the L1hit-time. Otherwise,
this reference causes an L1miss and the reference goes
to the L2 cache. The same action occurs for the L2 level;
misses at the L2 level are finally fulfilled by the main mem-
ory (M). Note that references only travel towards the mem-
ory, while data travels in both directions depending if the
request is a read/fetch or a write. As is depicted here, often
two or more cache levels are employed to reduce the av-
erage processor-experienced hit-time as much as possible
while maintaining reasonable costs and power consump-
tions (in current VLSI technologies, faster memories are
usually more expensive and greater consumers of power).

For address-based (versus content-addressable) mem-
ories [4], the address is broken into three fields; the
<block> which addresses the particular byte in thecache
line (for byte addressable machines); the<index> which
addresses 1 or more (for set-associative caches) cache lines;
and the<tag> which is the remainder of the address. The
<tag>, along with a few status bits, is contained in the
cache along with the data for each cache line. Theassocia-
tivity of the cache is the number of distinct places a par-
ticular cache line can occupy, a cache with an associativity
of 1 is normally called direct-mapped. A cache miss oc-
curs if a reference’s<tag> field does not match that of the
<tag>(s) in the cache for the same index bits (within the
associativity of the cache).

Figure 1. Typical 2-level cache design

Figure 2. One possibility of the new
cache/memory structure

The new, proposed cache memory structure fully gener-
alizes typical multiple level cache memory structures and,
conversely, existing (uniprocessor) cache structures are a
subset of the new structure. First, at any one or all cache lev-
els, the cache and subsequent memory space (either address
or content-based) may bedivided. As an initial example,
one possibility for the new structure is shown in Figure 2. In
this case, the L2 cache is divided (into parts called L2-1 and
L2-2). In order to logically divide references, either the L2
caches must filter incoming references or a partialdecode
or similar operation must occur at the division point (not
shown). It is important to recognize that there aretwo types
of divisions occurring, the division in memory space, and
the division in size of the caches (if any) allocated to each
part of the division. Dividing a cache based on addresses is
a well-known technique, as a recent example the PowerPC
604e processor uses odd/even cache line splits (a 1 bit de-
code) at the L1 level [10]. But in this part as well as all
existing address-split caches (to our knowledge), both the
cache size and memory space divisions are split evenly. In
this new structure,uneven splits, in either or both of mem-
ory space and cache size, are possible.

Secondly, in all existing (uniprocessor) split-cache struc-
tures the memory space is effectivelyre-merged at the next
level. While the unbalanced structures proposed allow for
such re-merging, they more importantly can be used to
keep the memory space (logically and physically) separated
which then allows for an unbalancednumber of cache lev-
els in each ‘caching path’ (from processor to memory). The
benefits derived from such imbalance(s) will be demon-
strated in ensuing examples.

So in its general form, the hierarchically divided
cache/memory scheme allows memory space division at any
point, including 0 or more caches before or after the divi-
sion. Memory space division at any point may or may not



be equal but isorthogonal meaning that every pairwise in-
tersection of each divided memory space is null and that
the union of the divided spaces is the entire memory space
(at the division point). The orthogonal memory space divi-
sion at each level implies that each memory reference has
a single caching path between the processor and the main
memory. Non-orthogonal cache/memory space, as used
for various multiprocessor memory systems such as cache-
coherent, non-uniform memory access (CC-NUMA) [13],
cache-only memory architecture (COMA) [12], and reac-
tive NUMA [3], do not readily appear useful for uniproces-
sor systems.

Note that the proposed unbalanced, hierarchically di-
vided cache system is essentially structural from a phys-
ical viewpoint and transparent from a logical addressing
perspective. This makes themcompatible with all exist-
ing cache protocols, including various write policies (e.g.
write-through, write-back), associativities, sub-block poli-
cies, both content and address-based referencing, associa-
tive and non-associative schemes, inclusive/non-inclusive
caches, paged or virtual memory translations, various pre-
fetching schemes, etc.

Several types of cache modifications, especially at the
L1 level, have been proposed; most of these are aimed at
improvement ofconflict cache misses (a conflict miss is
one which is caused due to collisions, rather than compul-
sory or capacity types, see [4]). For example, in recogni-
tion of the different characteristics of instruction fetching
and data reads/writes, the L1 cache is sometimes split based
upon memory accesstype (the instruction,I , and data,D,
caches) and this results in the so-called ‘Harvard architec-
ture’ (strictly speaking a Harvard architecture is one where
instructions and data memory spaces are completely sepa-
rated, but the term is also used in the case where just the L1
cache is split). Extending this further, the Non-Temporal
Streaming (NTS) cache makes uses of a parallel structure
for the data cache, with references separated based on a dy-
namic assessment of their (temporal) ‘access patterns’ [11].

The memory technology called Enhanced DRAM
(EDRAM) [6] integrates static RAM (SRAM) and dynamic
RAM (DRAM) on a single part where, in one implementa-
tion, the SRAM acts as a cache. Although this technology
aids in the flexibility of placing cache in the memory hier-
archy, it lacks the features of presented here, namely arbi-
trary structure and imbalance. Several other related modifi-
cations have been studied as well, but the structure proposed
here is different in that it separates caches strictly by refer-
ence. Furthermore, this is generalized to an hierarchical,
possibly unbalanced, form at all cache levels.

Figure 3. Comparison of tag, index and
block fields at a 1-bit divided memory point.
Dashed lines show alignment to original and
differences from this are 1-bit.

2.1. Considering Divisions from 1-Bit Decoding

Given this generalized structure, consider a more specific
situation. Suppose that at a 2-way cache division point that
the total amount of cache at the division remains constant
and that an addressed-based memory space division is done
using a single 1-bit decode. For simplicity at this point,
consider a division assuming that the block size is kept con-
stant, that a single address bit is decoded, and that the cache
size is halved for each division. We then have the following
possibilities:

Case–I. Bit is in original <tag> field. The miss-rate
may be higher or lower. Increased collisions in the
smaller caches may or may not be mitigated from the
memory space division that occurred in the<tag>
field.

Case–II. Bit is in original<index> field. Here the miss-
rate is exactly the same as it was in the original
case. Addresses which would ‘collide’ in the smaller
caches are separated into the two divided caches.

Case–III. Bit is in original<block> field. The miss-rate
may be higher or lower just as in Case I.

These situations may be visualized with the aid of Fig-
ure 3. The dark box represents the bit selected for the mem-
ory space division. For the cases here, it was assumed that
the block size is constant and that the cache for each divi-
sion is equal, therefore the<index> field is 1-bit shorter
and the<tag> field length is the same in all cases. Un-
balanced divided structures are more general than the cases
suggested above, but these assumptions serve as a good
starting point for investigation.



3. Results

Trace-based simulations are used to demonstrate the ad-
vantages of imbalanced cache structures. All of the simu-
lations use Sparc-processor traces of SPEC95 programs as
instrumented with the QPT2 tool [8, 9]. In cases where the
SPEC benchmark was composed of several program runs
with different input files, an arbitrary one was chosen to
generate the traces for that benchmark (e.g. expr.i in
the case of126.gcc). Benchmarks were compiled us-
ing egcs v1.03 [2] in accordance with the mandated
SPEC compiler and application options—the one excep-
tion was for the130.li (LISP interpreter) example where
optimization was turned off. For each of six integer and
six floating-point benchmarks, 100,000,000 (100M) traces
were generated for a total of 1.2G traces total. Each of
these twelve benchmarks were individually simulated us-
ing a combination of DineroIV [5] and PDATS-based [7]
cache simulators. Since the miss/hit rates presented include
all 100M traces, cold-start/compulsory miss effects are in-
cluded. Although all data presented is for the Sparc ar-
chitecture, several experiments using MIPS-3000 traces re-
vealed similar advantages—implying in an ad hoc way that
unbalanced cache structures may be applicable to many ar-
chitectures.

In the ensuing sub-sections, two main results are pre-
sented; the first highlights the potential advantage of mem-
ory space imbalance at a single cache level, while the sec-
ond shows cache size imbalance advantages. The first com-
parison concerns the L1 level only where total amount of
cache is constant for several designs—while the second sub-
section considers the case where cache size imbalance is
used, in this case at the L2 level.

3.1. Imbalanced memory space example

Using the SPEC95 benchmarks mentioned above, Ta-
ble 1 compares a Harvard architecture, an uniform and sev-
eral divided L1 cache structures, where a total of 32 KB of
L1 cache is present in all cases. Specifically, the compari-
son considers:

� a typical 32KB unified cache (labeled ‘Base
Case’).

� a Harvard architecture with 16KB for each of
the instruction and data caches.

� 2-way and 4-way divided caches where both
the memory space and cache sizes are divided
equally (the 2-way case is the same as an
address-split cache, albeit the bit used for the
division has been optimally selected). The 2-
way case uses bit<1> while the 4-way case
uses bits<0,1> for memory space division

(note that bit<0> is the least significant bit).
To maintain a constant L1 total size, each of the
2-way L1 caches are 16KB while each are 8KB
for the 4-way division.

� a divided cache where address space is un-
equally divided into two equally sized caches.
Bits <1,15> are used for the (uneven) address
split; one-quarter of the address space, bits
<1 = 0,15 = 0>, is directed to one side
while the remaining three-quarters of the space,
<1 = 0,15 = 1> and<1 = 1,15 = 0>
and <1 = 1,15 = 1>, is directed to the
other side. Note here that the memory space
is unevenly divided but that the cache sizes are
evenly divided.

In these cases, all caches have a block size of 32 bytes and
are direct mapped (associativity = 1). The table appears in
order from worst to best, with respect to both read and to-
tal miss-rates. The Harvard architecture is an improvement
over the unified (‘Base Case’) cache; the 2-way equally split
and 4-way equally split cases follow. However, as is readily
apparent the ‘2-way unequal’ case is shown to be far supe-
rior to all—it approximatelyhalves the number of both total
and read misses over the typical uniform cache.

3.2. Imbalanced cache size example

Results exploiting unequal cache sizes are are done at
the L2 level to highlight some additional advantages of im-
balanced structure. As a baseline comparison, a typical 2-
level, write-back, inclusive cache system (as is shown by
Figure 1) with the following characteristics is used: L1
is unified of size 32KB, has an associativity=1 and block
size=32 and has an 256KB L2 cache. This case is denoted
as ‘Base Case’ here—the L1 cache is indeed the same as
that of ‘Base Case’ in Table 1. The first divided cache struc-
ture under consideration, shown in Figure 4, divides the L1
cache using bit<1> and has 16KB on either side of the di-
vision (the graphical image is simplified from the previous
figures which showed detailed reference and data connec-
tions). Both the memory space and cache size division here
are equal—note that the L1 level is the same as in the case
labeled ‘2-way equal’ of Table 1. Finally, Figure 5 shows an
unbalanced (with respect to cache size) divided cache. Here
the entire 1MB of L2 cache is devoted to the ‘-1’ side. For
now, each of the three structures have a total of 256KB L2
and all L2 caches have associativity of 2 and a block size of
32 bytes.

The upper part of Table 2 compares these structures with
respect to the read miss-rates and memory traffic. At the
L2 level, the only advantage that Case A has over the Base
Case is merely that ofmaintaining the separation started at
the L1 level. That is, if the memory space were re-merged



Table 1. Comparison of L1 cache types with 32KB total memory
Base Case Harvard 2-way equal 4-way equal 2-way unequal

Total Misses 19,998,682 19,760,884 17,365,880 16,674,166 10,807,592
Read Misses 16,008,762 15,812,916 14,097,994 13,630,374 7,982,621

Table 2. Some L2 Comparisons
COMPARISON WHEN TOTALL2 SIZE IS 256KB

Base Case Case A Case B

L2 Read Misses 4,053,266 1,428,252 764,090
Mem Total Refs 6,355,516 4,606,729 3,039,955

COMPARISON WHEN TOTALL2 SIZE IS 1MB
L2 Read Misses 2,407,168 458,863 286,880

Mem Total Refs 3,922,016 2,519,561 2,016,077

Note: L1 performance for Case A and Case B is that listed
as ‘2-way equal’ in Table 1

Figure 4. Case A

Figure 5. Case B

after L1, as would be the case in say the address split cache
of the PowerPC 604e, then the (inferior) Base Case results
would apply. Returning to the focus on unbalanced systems,
Case B is an example of unbalanced cache size structure (in
this case to the extreme of having no cache on one side)
with an even memory space division. The lowered miss-
rates and lowered main memory references—summed from
from both the L2-1 and L1-2 of course—afforded by this
case clearly demonstrates the benefit of unbalanced cache
size structures.

Table 2 shows only read/fetch misses since these are
more critical to performance; the unbalanced systems also
improve other performance metrics,e.g. write miss-rates,
castouts (dirty line write-backs), etc. but these are not
shown here. For an L2 cache with total size of 256KB,
the unbalanced structure reduces the read miss-rate from
4,053,266 to 764,090 an improvement of over a factor of 5
and reduces memory traffic by a factor of 2. The lower por-
tion of Table 2 shows the same information, but now assum-
ing the total amount of L2 cache is 1MB rather than 256KB.
A factor of 2 times improvement in memory traffic remains
(approximately) and a factor of over 8 times improvement
is observed in read miss-rate.

4. Electrical Considerations

In addition to reduced miss-rates, the proposed method
may offer lower cycle-times (average hit-time); although
there are competing engineering trade-offs to be consid-
ered in trying to reach this objective. Increasing the car-
dinality of a division at any memory point is hampered by



Table 3. Net Cycle Time Comparisons, Total
L2 is 256KB

Base Case Case B

L1 Net Hit Rate 98.343% 98.571%
Hit Time 0 0

Miss Penalty 0.0 0.0
L2 Net Hit Rate 1.319% 1.279%

Hit Time 5 5
Miss Penalty 0.06595 0.06395

Main Net Hit Rate 0.337% 0.150%
Hit Time 24 24

Miss Penalty 0.0811 0.0360

Avg. Penalty (cycles) 0.14705 0.09995

two factors. The first is the latency introduced by decod-
ing or gating memory space splits (i.e. for typical address-
based memory this involves a Boolean-valued functions of
address bits while for content-addressable memory it may
be Boolean-valued hash functions of keys). Much or all of
this latency may behidden in that for many designs the re-
sult of the decision need not be valid until theend of the
access—all branches can begin access at the beginning of
the access leaving the final resolution toward the end of the
cycle. Keep in mind that these bits must be decoded eventu-
ally anyway. Furthermore, when divided the smaller caches
may have faster hit-times. Speedier access from multiple,
parallel memory as well as the possibility ofoverlapping
sequential memory access requests will also aid in latency
improvements in divided caches (much the same as in inter-
leaved memories). So the net result of this adverse ‘decod-
ing’ factor may well be nil. However, the second adverse
factor is the increased capacitance in the reference and data
busses, which results in additional delay. Additional bus
driver circuits may be able to overcome some of this up to
sensible limits. Regardless, both of these factors place ef-
fective limits on the amount of division possible and each
is ultimately very much dependent on the particular imple-
mentation technology.

Consider some typical memory characteristics as imple-
mented using current technologies: the latency of DRAM
main memory may be in the 10–100 cycle range and it may
be sized in the 4MB to 1GB (or more) range. The hit-time
of the L1 cache, perhaps sized in the 4KB to 128KB range,
is often times 0 (cycles). The second level cache, with a size
32KB to 1MB, may have a hit-time in the 2–20 cycle range.
Using representative numbers from these ranges, cycle time
comparisons between the Base Case and Case B, with miss-
rates from Table 2, is summarized in Table 3. The average
memory access time penalty is reduced from about 0.147 to

about 0.1, approximately a32% reduction. Note that this
reduction is strictly due to miss-rate improvements; further
improvements would apply if cache size splitting resulted
in caches with lower hit-times.

5. Unbalanced Cache System Design

A good question is:How can unbalanced, hierarchically
divided caches be designed? The use of bit<1> for Case A
and Case B discussed previously was chosen using the aid
of a program devised to assist in designing divided memory
structures. This design aid determines the effective miss
rates for possible single bit divisions under the assumption
that the subsequent amount of cache will be divided equally.
This tool, coupled with a tool to extract cache misses and
castouts, was used in a hierarchical manner to design hier-
archically divided cache structures by first deciding level 1,
and recursively using it on subsequent levels. If at any point
‘reasonable’ improvements are not made by using a divided
scheme, then this point is left undivided.

However, this locally greedy design approach, iteratively
applied at each cache level, is far from optimal (since this
design problem does not exhibit optimal sub-structure, a
greedy approach in general will not be optimal [1]). As
such, a more comprehensive tool will ultimately be needed
which includes the following features:

� Looks at n-way divisions rather than only 2-
way.

� Simultaneously and completely considers vari-
ous unequal memory space and cache size divi-
sions.

� Considers situations other than when total
cache memory at each level is fixed. That is,
design tradeoffs might be madebetween the
amounts of L1 and L2 cache.

� Considers the total cache/memory system
rather than working from the processor out-
wards.

Such features, as well as some others, would en-
able a more comprehensive design for unbalanced divided
cache/memory structures.

6. Concluding Remarks

The new idea of using cache imbalance in a hierarchical
manner has been introduced. It was shown that such struc-
tures can outperform Harvard (in the sense of I/D split L1
caches) and traditional linear cache memory systems, even



Figure 6. More Generalized Possibility

within the assumption that the total amount of cache mem-
ory at each level is constant. Such structures, however, of-
fer the ability to more flexibly position memory and cache,
perhaps with varying response times, in a very generalized
hierarchy. They also offer the ability to possiblity partition
the logical address space in an uneven manner. They are ap-
plicable to both address-based and content-based systems,
and are compatible with any memory protocols. Although
shown beneficial for general-purpose computing via use of
SPEC95 traces, this approach may be especially effective in
embedded systems where memory access patterns are more
predictable. Conversely, in an unbalanced cache system,
compilers could take advantage of the imbalance by plac-
ing often-accessed parts of the datum in the ‘most cached’
memory space(s).

Two forms of imbalance were independently shown
beneficial, memory space imbalance with evenly sized
cache division and cache size imbalance with even memory
space division. Of course, these forms of imbalance may be
combined (even at a single caching level) for potential fur-
ther gains. The assistance of more advanced design tools, as
discussed in the previous section, would be critical to such
an endeavor. Figure 6 shows a more generalized possibility.
Here the various caches may be sized differently and note
that the possibility of re-merging either at the memory level
(L3-1 and L3-2 into M-1) or at a cache level (L2-2 and L2-3
into L3-3) is shown. Creating such a general structure in-
cluding cache sizing for some optimal condition (i.e. cost,
power, speed) is a challenging problem as has been men-
tioned.

It is interesting to think about why unbalancing, in either
of memory space or cache size (or both), works. Caching
itself works only because real programs exhibit the princi-
ple of “locality of reference” (over temporal frames) [4].

While balanced memory-space/cache-size division can re-
duce conflict misses (as is witnessed in Table 1), there is no
guarantee of this (see Section 2). But unbalancing can im-
prove this even further—as demonstrated with the SPEC95
traces. This must mean that different parts of the address
space have different caching requirements. In some sense
this should be expected, it merely means that the degree of
locality of reference exhibited is a function of the area of
memory space.

All results here assumed that the cache structure and di-
vision logic were constant throughoutall examples (SPEC
benchmarks). However, a dynamic (or configurable com-
puting) version would allow the cache system to be config-
ured on say a per application basis or possibly even at a finer
granularity. Such a dynamic approach would, of course, fur-
ther aid the technique in reducing hit-time making it even
more attractive.

In summary, the prime advantages of hierarchically di-
vided cache/memory structures are:

� They are rather simple to implement.

� A configuration may be found in which the
miss-rate improves.

� Each of the smaller caches in the division may
be electrically faster.

� Different parts of the memory space can
be cached differently including both different
amounts of caches as well as with varying num-
ber of levels.

While the only disadvantages seem to be those related to
electrical considerations:

� Additional decoding/gating is needed at mem-
ory space division points. This does not
seem too significant in that (for address-based
caches/memory) these bit(s) would eventually
have to be decoded anyway.

� Additional capacitance at division points—
may have negligible effect depending on
drivers/technology.

A US Patent has been filed based on this work.

References

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduc-
tion to Algorithms. MIT Press, Cambridge, MA, 1990.

[2] Cygnus Solutions, Inc.//egcs.cygnus.com/.
[3] B. Falsafi and D. A. Wood. Reactive NUMA: A design for

unifying S-COMA and CC-NUMA. In24th ACM Int. Symp.
on Computer Architecture, pages 229–40, 2–4 June 1997.
Denver, CO.



[4] J. L. Hennessy and D. A. Patterson.Computer Architec-
ture: A Quantitative Approach. Morgan Kaufmann, San
Francisco, CA,�nd edition, 1996.

[5] M. Hill and J. Elder. DineroIV trace-
driven uniprocessor cache simulator. See:
//www.cs.wisc.edu/˜markhill/DineroIV,
1998.

[6] S. S. Iyer and H. L. Kalter. Embedded DRAM technology:
opportunities and challenges.IEEE Spectrum, 36(4):56–64,
Apr. 1999.

[7] E. E. Johnson and J. Ha. PDATS: Lossless address trace
compression for reducing file size and access time.��

th

IEEE Int. Phoenix Conf. on Computers and Communica-
tions, pages 213–9, 12–15 April 1994.

[8] J. R. Larus. Efficient program tracing.IEEE Computer Mag-
azine, 26(5):52–61, May 1993.

[9] J. R. Larus and E. Schnarr. EEL: Machine-independent ex-
ecutable editing. InProceedings of the ACM SIGPLAN’95
Conference on Programming Language Design and Imple-
mentation (PLDI’95), pages 291–300, La Jolla, CA, 18–
21 June 1995.

[10] Motorola Inc.PowerPC 604e: RISC Microprocessor User’s
Manual, Mar. 1998.

[11] J. A. Rivers, E. S. Tam, and E. S. Davidson. On effective
data supply for multi-issue processors. InIEEE Interna-
tional Conference on Computer Design (ICCD’97), pages
519–28, 12–15 October 1997.

[12] A. Saulisbury, T. Wilkinson, J. Carter, and A. Landin. An
argument for Simple COMA. InFirst IEEE Int. Symp. on
High-Performance Computer Architecture, pages 276–85,
22–25 January 1995. Raleigh, NC.

[13] Z. Zhang and J. Torrellas. Reducing remote conflict misses:
NUMA with remote cache versus COMA. InThird IEEE
Int. Symp. on High-Performance Computer Architecture,
pages 272–81, 1–5 February 1997. San Antonio, TX.


